Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 169: 134-143, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634467

RESUMO

Peritoneal metastasis is an advanced cancer type which can be treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Here, chemotherapeutics are nebulized under high pressure in the intraperitoneal (IP) cavity to obtain a better biodistribution and tumor penetration. To prevent the fast leakage of chemotherapeutics from the IP cavity, however, nebulization of controlled release formulations is of interest. In this study, the potential of the thermosensitive hydrogel Pluronic F127 to be applied by high pressure nebulization is evaluated. Therefore, aerosol formation is experimentally examined by laser diffraction and theoretically simulated by computational fluid dynamics (CFD) modelling. Furthermore, Pluronic F127 hydrogels are subjected to rheological characterization after which the release of fluorescent model nanoparticles from the hydrogels is determined. A delicate equilibrium is observed between controlled release properties and suitability for aerosolization, where denser hydrogels (20% and 25% w/v Pluronic F127) are able to sustain nanoparticle release up to 30 h, but cannot effectively be nebulized and vice versa. This is demonstrated by a growing aerosol droplet size and exponentially decreasing aerosol cone angle when Pluronic F127 concentration and viscosity increase. Novel nozzle designs or alternative controlled release formulations could move intraperitoneal drug delivery by high pressure nebulization forward.


Assuntos
Partículas e Gotas Aerossolizadas/farmacologia , Antineoplásicos/farmacologia , Absorção Peritoneal/efeitos dos fármacos , Neoplasias Peritoneais , Poloxâmero/farmacologia , Preparações de Ação Retardada/farmacologia , Composição de Medicamentos/métodos , Excipientes/farmacologia , Humanos , Hidrodinâmica , Hidrogéis/farmacologia , Nanopartículas/uso terapêutico , Nebulizadores e Vaporizadores , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/terapia , Distribuição Tecidual
2.
Eur J Pharm Biopharm ; 166: 10-18, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34082122

RESUMO

The purpose of these studies was to understand the effect on product performance of batch-to-batch variability in both the amikacin liposome inhalation suspension (ALIS) formulation and its delivery device, the Lamira® nebulizer system, designed and manufactured by PARI (PARI Pharma GmbH, Munich, Germany). Three batches of ALIS spanning a range of lipid concentrations (43, 48 and 54 mg/mL) were tested with nine PARI inhalation devices that varied within the production process of the vibrating membrane with respect to hole geometry. Three hole geometry clusters were built including a geometry close to the mean geometry (median) and two geometries deviating from the mean geometry with smaller (smaller) and larger (larger) holes. The output parameters included the nebulization rate, the aerosol droplet size distribution, the liposome vesicle size post-nebulization, and the fraction of amikacin that remained encapsulated post-nebulization. Across the 27 experimental combinations of three formulation batches and nine devices, the nebulization time varied between 12 and 15 min with the fastest nebulization rate occurring with the combination of low lipid concentration and larger hole geometry (0.68 g/min) and the slowest nebulization rate occurring with the combination of high lipid concentration and the smaller hole geometry (0.59 g/min). The mean liposome vesicle size post-nebulization ranged from 269 to 296 nm across all experimental combinations which was unchanged from the control samples (276-292 nm). While all three batches contained > 99% encapsulated amikacin prior to nebulization, the nebulization process resulted in a consistent generation of ~ 35% unencapsulated amikacin (range: 33.8% to 37.6%). There was no statistically significant difference in the generated aerosol particle size distributions. The mass median aerodynamic diameters (MMAD) ranged from 4.78 µm to 4.98 µm, the geometric standard deviations (GSD) ranged from 1.61 to 1.66, and the aerosol fine particle fraction (FPF < 5 µm) ranged from 50.3 to 53.5%. The emitted dose (ED) of amikacin ranged from 473 to 523 mg (80.2 to 89.3% of loaded dose (LD)) and the fine particle dose (FPD < 5 µm) ranged from 244 to 278 mg (41.4 to 47.1% of label claim (LC)). In conclusion, while variations in the lipid concentration of the ALIS formulation and the device hole geometry had a small but significant impact on nebulization time, the critical aerosol performance parameters were maintained and remained within acceptable limits.


Assuntos
Amicacina , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Nebulizadores e Vaporizadores , Administração por Inalação , Partículas e Gotas Aerossolizadas/química , Partículas e Gotas Aerossolizadas/farmacologia , Aerossóis/administração & dosagem , Aerossóis/farmacologia , Amicacina/administração & dosagem , Amicacina/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Lipídeos/química , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA